Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation
نویسندگان
چکیده
TFAM (transcription factor A, mitochondrial) is a DNA-binding protein that activates transcription at the two major promoters of mitochondrial DNA (mtDNA)--the light strand promoter (LSP) and the heavy strand promoter 1 (HSP1). Equally important, it coats and packages the mitochondrial genome. TFAM has been shown to impose a U-turn on LSP DNA; however, whether this distortion is relevant at other sites is unknown. Here we present crystal structures of TFAM bound to HSP1 and to nonspecific DNA. In both, TFAM similarly distorts the DNA into a U-turn. Yet, TFAM binds to HSP1 in the opposite orientation from LSP explaining why transcription from LSP requires DNA bending, whereas transcription at HSP1 does not. Moreover, the crystal structures reveal dimerization of DNA-bound TFAM. This dimerization is dispensable for DNA bending and transcriptional activation but is important in DNA compaction. We propose that TFAM dimerization enhances mitochondrial DNA compaction by promoting looping of the DNA.
منابع مشابه
The manner in which DNA is packaged with TFAM has an impact on transcription activation and inhibition
For successful mitochondrial transgene expression, an optimal packaging exogenous DNA is an important issue. We report herein on the effects of DNA packaged with mitochondrial transcription factor A (TFAM), which packages mitochondrial DNA (mtDNA), on the transcription process. Our initial findings indicated that the transcription of the TFAM/DNA complex was activated, when the complex was form...
متن کاملTranscriptional activation by mitochondrial transcription factor A involves preferential distortion of promoter DNA
Mitochondrial transcription factor A (mtTFA/TFAM) is a nucleus-encoded, high-mobility-group-box (HMG-box) protein that regulates transcription of the mitochondrial genome by specifically recognizing light-strand and heavy-strand promoters (LSP, HSP1). TFAM also binds mitochondrial DNA in a non-sequence specific (NSS) fashion and facilitates its packaging into nucleoid structures. However, the r...
متن کاملAllostery through protein-induced DNA bubbles
Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-functio...
متن کاملGenome-Wide Analysis Reveals Coating of the Mitochondrial Genome by TFAM
Mitochondria contain a 16.6 kb circular genome encoding 13 proteins as well as mitochondrial tRNAs and rRNAs. Copies of the genome are organized into nucleoids containing both DNA and proteins, including the machinery required for mtDNA replication and transcription. The transcription factor TFAM is critical for initiation of transcription and replication of the genome, and is also thought to p...
متن کاملMitochondrial Transcription Factor A (TFAM) Binds to RNA Containing 4-Way Junctions and Mitochondrial tRNA
Mitochondrial DNA (mtDNA) is maintained within nucleoprotein complexes known as nucleoids. These structures are highly condensed by the DNA packaging protein, mitochondrial Transcription Factor A (TFAM). Nucleoids also include RNA, RNA:DNA hybrids, and are associated with proteins involved with RNA processing and mitochondrial ribosome biogenesis. Here we characterize the ability of TFAM to bin...
متن کامل